jueves, 29 de octubre de 2015

Tecnologías en la medicina


Un pequeño chip recorre el flujo sanguíneo de una persona para advertir de un infarto; desde Estados Unidos, un especialista asesora una cirugía en Colombia como si estuviera presente y una impresora 3D fabrica parte de la mandíbula de un paciente.


No es el futuro ni, mucho menos, una película de ciencia ficción; es el presente, y algunos de los avances médicos en los que trabajan investigadores de todo el mundo, incluso de Colombia, y que abarcan tres grandes grupos: medicamentos, dispositivos y procesos de atención como cirugías mínimamente invasivas.


El cirujano Mauricio Vélez Cadavid, miembro del Consejo Nacional de Talento Humano en Salud y experto en tecnología médica, dice que con los avances “el médico corre el riesgo de volverse operario de máquinas. El criterio u ‘ojo clínico’ ya no será suficiente, porque hay herramientas para ser más exactos y una sociedad que les exige a los médicos más y mejores resultados en tratamientos e intervenciones.


Sobre las nuevas posibilidades tecnológicas, Carlo Vinicio Caballero Uribe, internista y reumatólogo, dice que hay una convergencia muy importante entre la secuenciación del ADN, equipos médicos y teléfonos inteligentes con aplicaciones para todo tipo de necesidades, con lo cual se logra medir objetivamente lo que antes era subjetivo.


En consulta, expresa el especialista, hasta el fonendoscopio –símbolo de la medicina– tuvo un salto tecnológico: ahora los hay con ultrasonido y pantalla.


Pueden costar 9.000 dólares y la ventaja frente a los tradicionales es que, además de oír los ruidos cardiacos, es posible ver el movimiento del corazón.


Jaime Toro, médico de la Fundación Santa Fe de Bogotá, experto en avances tecnológicos en neurología, manifiesta que, aunque los avances suben los costos, la precisión justifica todo.


Estos son, en concepto de los expertos consultados, algunos de los adelantos más revolucionarios en materia de salud.Órganos artificiales
En la actualidad existen avances en ingeniería, biomédica, robótica, electrónica y nanotecnología para crear órganos que suplen el funcionamiento del cuerpo. Hasta hace poco, por ejemplo, la única alternativa para el diabético era inyectarse insulina, pero hoy es posible usar una bomba con movimiento que va liberando la sustancia. Además, ya existe el páncreas artificial y hay pacientes utilizándolo.


Otra opción para sustituir partes del cuerpo son las técnicas de impresión 3D, que permiten obtener piezas precisas en partes de cráneo y mandíbula a la medida del paciente, sin esperar largos turnos de donaciones en bancos de huesos. Sobre esto hay modelos exitosos en Estados Unidos y Europa. Y las alternativas se amplían con la opción de los órganos cultivados en laboratorios: médicos han podido crear tráqueas sintéticas, implantes de piel, cartílagos y vasos sanguíneos artificiales.


En cuanto a piel, hay técnicas como autoinjerto mallado, cultivos de la propia piel del paciente, injertos de piel de cadáver y productos sintéticos.


Examen cerebral
Ya es posible saber con años de anticipación si una persona tiene riesgo de sufrir alzhéimer: una resonancia magnética del cerebro visualiza los depósitos de proteína betaminoides (posible causante de este mal). Esta tecnología tiene éxito en EE. UU. y está próxima a llegar al país. Lo que sí está disponible en clínicas de Colombia, como la Fundación Santa Fe, es un equipo que permite a los especialistas -en casos de tumores de la cabeza- ver las vías del cerebro y concluir qué tan afectadas podrían llegar a resultar áreas como la del lenguaje para hacer cirugías más precisas. Cuando se trata de un paciente en estado de coma, la resonancia permite saber qué tan conservado está el cerebro.


Telemedicina
Con el desarrollo de las redes informáticas, crece la tendencia de la telemedicina, que les permite a los médicos conectarse con sus pacientes. Existen, además, directorios virtuales para buscar médicos y especialistas en horarios flexibles, como Doctoralia (EE. UU.) o Babilonia, creada por un empresario británico. El reparo a esta tecnología, que sustituye al consultorio, es que, al ser en línea, se pueda poner en riesgo la confidencialidad de la cita.


Procedimientos robóticos
La cirugía robótica les dio precisión a operaciones delicadas, como las de próstata, corazón, neurológicas y oftalmológicas.


Uno de los equipos más conocidos para este fin es el sistema Da Vinci, una sofisticada plataforma robótica diseñada para ampliar las capacidades del cirujano.


Igualmente, en las salas de cirugía se han empleado, con buenos resultados, las gafas de Google, con las que el cirujano que lidera la operación recibe apoyo de otro especialista, que, de manera remota, ve las cosas desde la misma perspectiva, como si estuviera ahí mismo.


Chip inyectable
Una reconocida marca tecnológica tiene entre sus planes crear un nanochip inyectable que navegue por los vasos arteriales para advertir con anticipación de eventos como un infarto. “En Harvard hubo un encuentro donde verificamos el funcionamiento del escáner para examinar todo el cuerpo. Es un examen que ahora cuesta un millón de dólares, aunque pronto va ser accesible”, explica el cirujano Mauricio Vélez. Por otra parte, en algunos lugares del mundo con alto riesgo de enfermedades como el VIH-sida existe el proyecto de que los teléfonos puedan funcionar como un dispositivo capaz de tomar pruebas de sangre y enviarlas a los especialistas.


Medicamentos biotecnológicos
El genoma humano abrió la opción de que a algunas personas les puedan detectar cáncer y les den medicinas personalizadas, sin efectos adversos. Los medicamentos biotecnológicos aumentaron la posibilidad de producir una medicina con datos genéticos y tecnologías para que las células actúen como fábrica de sustancias y luego se conviertan en medicinas.


Hasta hace poco, descifrar el genoma era cuestión de años y el costo era superior a los 100 mil dólares. Expertos creen que, antes del 2019, el genoma estará disponible en menos de 24 horas y por un costo inferior a los mil dólares. Esto revolucionará aún más la medicina.


Aporte colombiano
La Universidad Icesi tiene dos proyectos dirigidos a pacientes con párkinson: uno, con tecnologías de juego Xbox Kinect (con sensor de movimiento) que miden la evolución de la enfermedad. La idea es que el paciente no tenga que ir hasta un laboratorio para medir qué tan largos son sus pasos o el tiempo que tarda para darlos. Un ‘software’ hace el cálculo y envía las conclusiones al especialista. El segundo proyecto es una aplicación que incluye una agenda con la que el paciente registra cuándo tomó el fármaco, cuánto duró su efecto, a qué hora comió, cuánto le tiembla la mano y qué tan inestable es su escritura.


Los datos le indican al médico si hay necesidad de cambiar las dosis del medicamento, sin esperar una cita.


https://www.google.com.co/search?q=tecnologia+en+la+medicina&hl=es-419&biw=1366&bih=667&site=webhp&source=lnms&tbm=isch&sa=X&sqi=2&ved=0CAYQ_AUoAWoVChMIupKKrdroyAIVAdkeCh1WewJp#imgrc=Sc-4jcjc9LXMKM%3A
4255


Actualmente la tecnología es un factor vital para el desarrollo y evolución de una sociedad con sed de perfeccionamiento, la nuestra; relativamente el aporte de la tecnología es esencial en todas las áreas, pero se hace imprescindible en lo que respecta a la medicina. Consideramos que debe existir una interrelación entre medicina y tecnología, ya que el manejo de los equipos médicos de alta complejidad son parte de los avances tecnológicos que se han venido efectuando a través del tiempo.
En los últimos años la tecnología se ha caracterizado por tener auge en el avance vertiginoso de la ciencia.


El desarrollo tecnológico ha propiciado un cambio asombroso en la medicina; su avance ha permitido conocer infinidad de procesos que explican el porqué de muchas enfermedades, de eventos que ocurren en el organismo humano y de las consecuencias de relacionarse con su entorno.
Esto ha generado una forma más simple del razonamiento en la ejecución del acto médico, surgiendo dos tendencias distintas de pensamiento: Una en la que se investiga, reflexiona y estudia permanentemente acerca de los procesos y otra en la que se aplica la tecnología.



Gracias a la tecnología en el ejercicio de la medicina se han logrado las condiciones óptimas para los pacientes en cualquier intervención quirúrgica. Actualmente, se llegaron a utilizar los avances tecnológicos no sólo para curar sino también para prevenir las enfermedades; y posteriormente para todo tipo de investigación médica, la cual gracias a la tecnología ha realizado importantes descubrimientos. Los expertos se han ocupado de la incorporación de los avances tecnológicos en la práctica de la medicina, por lo que se prevé un cambio radical de la ciencia médica en el futuro.

UN POCO DE HISTORIA:

La tecnología ha tenido una marcada evolución en cuanto a la medicina y al mismo tiempo a causado un gran impacto en nuestra sociedad


En la línea del tiempo varios son los avances tecnológicos desde la medicina:
1895 W. C. Roenteng descubre los rayos X, los cuales luego fueron mejorados, con el paso del tiempo.


1921 por primera vez se utiliza un microscopio en una operación; actualmente en vez de microscopios, se utiliza la técnica “endoscopia” para realizar cualquier intervención quirúrgica demasiado pequeña para la vista humana. Esta técnica permite revisar tejidos por medio de una minúscula lamparita colocada al borde de un delgado alambre elaborado con fibra óptica. Gracias a la endoscopia se han podido realizar cirugías con la menor agresividad hacia el paciente, ya que antes se requería de una abertura grande y ahora solamente hay que realizar un pequeño corte.
1942 se utiliza por primera vez un riñón artificial para la diálisis; este sistema de órganos artificiales se ha desarrollado significativamente por todo el mundo y tiene un importante auge. Miles de personas en la actualidad reciben diariamente trasplantes artificiales. Sin embargo, la técnica aún está limitada, ya que no se han logrado crear, por ejemplo, intestinos, hígados, etcétera;
1952 P.M. Zoll implanta el primer marcapasos; son dispositivos eléctricos que hacen latir el corazón descargando impulsos eléctricos, que reemplazan el propio sistema de control del corazón. Consiste en una cajita de poco peso que se implanta debajo de la piel. La cajita lleva una batería de litio que dura más de 10 años.
1953 se obtiene el modelo de la doble hélice del ADN; se puede señalar que este descubrimiento revolucionó tanto la medicina como nuestra manera de pensar. En el año de 1991 se inició un programa, Análisis del Genoma Humano, que tiene como principal objetivo descifrar el código genético humano. Hasta la fecha se han identificado cerca de 18,000 genes. En un futuro, gracias a las nuevas computadoras, cada vez más especializadas, se identificará un gen cada hora.
1967 primer trasplante de corazón entre humanos. Hoy en día, estos trasplantes, gracias a la aplicación de la tecnología, es una operación relativamente sencilla. El riesgo ha disminuido notablemente.
1978 primer bebé concebido in Vitro, es decir: se unieron óvulos y espermatozoides en un medio de cultivo propiciado en probeta. Esta manera de concebir aún no es muy popular, aunque en los últimos años, se ha comenzado a realizar con más frecuencia.


CLASIFICACIÓN DE LAS TECNOLOGÍAS MÉDICAS :


De una forma habitual las tecnologías médicas suelen clasificarse de diferentes maneras, por ejemplo:


– Tecnologías de diagnóstico: permiten identificar y determinar los procesos patológicos por los que pasa un paciente. Ej: TAC.


– Tecnologías preventivas: protegen al individuo contra la enfermedad. Ej: mamografía.


– Tecnologías de terapia o rehabilitación: liberan al paciente de su enfermedad o corrigen sus efectos sobre las funciones del paciente. Ej. Láser de dióxido de carbono (en cáncer de piel, odontología, y cortes quirúrgicos).


– Tecnologías de administración y organización: permiten conducir el otorgamiento correcto y oportuno de los servicios de salud. Ejemplo: microprocesadores genéticos.


TOMOGRAFÍA COMPUTARIZADA (tomas con rayos X):


Hace no demasiados años, el diagnóstico y la programación del tratamiento (cirugía, fármacos, etc.) para desórdenes en los tejidos blandos como los del cerebro, el hígado, etc., se hacía mediante procedimientos invasivos y técnicas de aplicación de rayos X, que brindan una imagen en dos dimensiones, donde los órganos aparecen comprimidos o aplastados en la placa. Actualmente, se aplican nuevos procedimientos:


Scanner TAC (Tomografía Axial Computarizada): consiste básicamente en una parrilla de rayos X independientes que atraviesan al paciente. Su funcionamiento mecánico se realiza a través de emisores y detectores que giran simultáneamente y, al realizar una revolución completa, se envían los datos a una computadora que los analiza. De la cuadrícula formada, con los emisores y detectores, a cada una se le asigna un tono gris de tal manera que se logra la imagen de un corte en rebanadas del paciente. Mediante el avance del paciente en el tubo radiológico se realizan cortes sucesivos hasta obtener una imagen prácticamente tridimensional.


— Scanners volumétricos: realizan una obtención de datos constante. Para lograrlo, hacen que el paciente se mueva a lo largo del túnel y mediante la rotación continua del tubo se obtiene una imagen continua en forma de hélice, la cual es procesada por la computadora, obteniendo así una imagen tridimensional continua.

Angiografías por sustracción digital: Se obtienen imágenes de los vasos sanguíneos por medio de técnicas numéricas. Para la técnica normal de rayos X, estos vasos son casi invisibles, sin embargo esta técnica realiza una primera toma radiográfica sin contraste de la zona bajo estudio, lo que ofrece una perspectiva de toda la estructura orgánica, que se almacena en la memoria de la computadora. Después se inyecta yodo al flujo sanguíneo del paciente y se hace una segunda imagen toma de contraste, que refleja el flujo sanguíneo. A esta toma se le restan las imágenes quedando solamente los vasos sanguíneos. Con esta técnica se llega a tener una resolución tal que se pueden ver vasos de un milímetro de diámetro.

No hay duda que las técnicas desarrolladas alrededor de la TAC han revolucionado la forma de diagnóstico de muchas enfermedades y sobre todo de lesiones en tejidos blandos. No se podría imaginar tener en la actualidad un hospital sin éste tipo de equipos.





RESONANCIA MAGNÉTICA NUCLEAR:


Esta técnica es ideal para la detección de tumores muy pequeños, que pueden resultar invisibles para la técnica tradicional por rayos X. La RMN está basada en las alteraciones magnéticas que sufren las moléculas de agua en el organismo. Las imágenes se obtienen de la siguiente manera:


œSe somete el cuerpo a un fuerte campo magnético; esto hace que las moléculas de hidrógeno del agua actúen como micro         imanes, haciendo que éstos se alineen en una misma dirección. Al mismo tiempo se les bombardea con impulsos de radiofrecuencia haciendo que los núcleos atómicos se desorienten. Sin embargo, si la radiofrecuencia se corta, los átomos vuelven a su alineación original, emitiendo una señal muy débil.


œ Estas señales son colectadas en una computadora, que mide el tiempo que tardan los átomos de hidrógeno en retornar a su posición de estado de equilibrio, creando con esta información una imagen bidimensional del órgano o sección del cuerpo observada. Como este tiempo de retorno no es el mismo entre los núcleos atómicos de los diferentes tejidos se puede aprovechar este hecho para distinguir entre los tejidos.


œ Una vez colectadas estas señales la computadora asigna un color o un tono gris a cada tipo de tejido para formar imágenes más nítidas de los diferentes órganos bajo observación. Esto sirve para la identificación de tejidos cancerosos, ya que el agua contenida en un tumor difiere totalmente de la de un tejido normal.




                                                    ECONOGRAFÍA:


Esta técnica se ha ido popularizando y es también conocida como Diagnóstico por Ultrasonidos. Los ultrasonidos son vibraciones acústicas emitidas por un cristal piezoeléctrico que es capaz de transformar vibraciones en impulsos eléctricos y viceversa. Así, al estimularse eléctricamente al sensor, éste emite vibraciones que viajan hasta el órgano bajo estudio y rebotan del cuerpo hacia el sensor. Una computadora colecta estos ecos transformándolos en imágenes. Se utiliza un gel especial para asegurar un mejor contacto con la piel del paciente y así obtener imágenes más nítidas.


La econografía permite apreciar diferencias en la densidad de un órgano, a diferencia de los rayos X que sólo aportan datos sobre el contorno y forma del mismo. Una de las limitaciones de éste tipo de diagnóstico es que no puede ser utilizada en el diagnóstico pulmonar.


En la forma tradicional de diagnóstico Econográfico las imágenes son estáticas. Sin embargo, gracias al fenómeno Doppler, es posible obtener imágenes con movimiento. Este fenómeno es utilizado para detectar movimiento y es el mismo que utilizan muchos equipos de medición en la industria. Consiste en enviar una señal acústica sobre una partícula en movimiento y medir el tiempo del rebote de dicha señal para calcular la velocidad de dichos objetos. Esta técnica sirve incluso para crear imágenes vasculares completas.


Un aspecto negativo de la econografía es que su interpretación es muy ardua, lo que a veces lleva a los médicos a cometer errores fatales, que luego conduce a funestas consecuencias.
En la Obstetricia es donde más impacto ha tenido ésta tecnología ya que el líquido amniótico es un medio perfecto para la propagación de sonidos de altas frecuencias.

El tecnólogo médico posee conocimientos y comprensión de los fundamentos biológicos, bioquímicos y biofísicos que le permiten desarrollar competencias y habilidades para actuar en diferentes ámbitos de prevención, fomento y recuperación de la salud, de apoyo al diagnóstico y tratamiento de problemas de salud que afectan al ser humano y su entorno. Su preparación sustenta sus principios éticos y su sentido social.


Especialidades[editar]
Laboratorio Clínico, hematología y banco de Sangre[editar]
Artículo principal: Laboratorio clínico
Artículo principal: Hematología
Artículo principal: Banco de sangre
Los ejes de esta mención son la realización de exámenes de laboratorio que estudian los estados fisiológicos y fisiopatológicos de diferentes sistemas del organismo a través de métodos bioquímicos, moleculares y morfológicos; la detección e identificación de agentes causantes de enfermedades que pueden afectar al hombre y su entorno; la realización de terapia transfusional segura, eficiente y eficaz.


Pruebas de laboratorio representativas[editar]
Pruebas hematológicas y hemostasia
Microbiológicas
Pruebas inmunológicas
Pruebas bioquímicas
Morfofisiopatología y citodiagnóstico[editar]
Artículo principal: Morfofisiopatología
Los ejes de esta mención son el estudio de la morfología, fisiología y bioquímica celular y tisular, en condiciones normales y patológicas, y el conocimiento de los fundamentos de distintos métodos de estudio morfológico y molecular, junto con su correcta aplicación y análisis, que permitan detectar y analizar distintos componentes de células y tejidos del organismo, con el objeto de reconocer e interpretar sus diversas alteraciones morfofuncionales y enfermedades específicas, orientados a apoyar el diagnóstico anátomo-patológico.


El tecnólogo médico de esta especialidad evalúa y aplica los conocimientos y habilidades adquiridas en las áreas de histología, histoquímica, e inmunocitoquímica, biotecnología, anatomía patológica, microscopía electrónica, citogenética y citodiagnóstico, contribuyendo al fomento y recuperación de la salud.


Esta mención tiene por objetivo preparar profesionales que trabajen en el diagnóstico a través del estudio de células por medio de exámenes como papanicolao y el análisis de biopsias. Posee conocimientos y habilidades adquiridas en las áreas de histología, histoquímica, inmunocitoquímica, biotecnología, anatomía patológica, microscopía electrónica, citogenética y citodiagnóstico. Prepara el material anatómico, biópsico y autópsico para su estudio histológico. Aplica técnicas de cortado, coloración, fijación y congelación de tejidos, logrando así laminas histológicas para ser observadas al microscopio a los efectos de realizar diagnósticos e investigaciones. Puede ejercer sus funciones en instituciones públicas, Dpto. de Oncología de Facultades de Medicina, Institutos de Oncología, Centros de lucha contra el Cáncer y en clínicas privadas


Imagenología y física médica[editar]
Artículo principal: Física médica
Artículo principal: Radiología
Se orienta a la obtención de imágenes anatómicas y/o fisiológicas, como también la planificación, cálculo dosimétrico y la aplicación de tratamiento, utilizando una amplia gama de equipos, los que en su mayoría involucran la utilización de radiación ionizante, con el objetivo de contribuir al resto del equipo de salud en la obtención de un diagnóstico preciso y un tratamiento adecuado; procurando la seguridad radiológica tanto de los profesionales, como de los pacientes.


Oftalmología y optometría[editar]
Artículo principal: Oftalmología
Artículo principal: Optometría
Nace de la necesidad de realizar y complementar exámenes de apoyo al diagnóstico oftalmológico, así como en la prevención de deficiencias visuales y en los casos necesarios, en el tratamiento y la rehabilitación visual. Su desempeño se realiza a nivel de atención primaria en sectores hospitalarios y de primeros auxilios a niveles estatales y privados, siendo este el filtro principal en las afecciones del campo visual.


El tecnólogo médico con mención en oftalmología puede prescribir, adaptar y verificar lentes ópticos, prescribir y administrar los fármacos del área oftalmológica de aplicación tópica que sean precisos, y controlar las ayudas técnicas destinadas a corregir vicios de refracción. Puede, asimismo, detectar alteraciones del globo ocular y disfunciones visuales, a fin de derivar oportunamente al médico cirujano especialista que corresponda.1 2


Otorrinolaringología[editar]
Artículo principal: Otorrinolaringología
Pueden desarrollarse en:


La clínica, haciendo exámenes auditivos, de equilibrio y de la función nasal para el apoyo al diagnóstico médico, como control de tratamientos médico-quirúrgicos;
La elaboración y ejecución de programas de pesquisa precoz de alteraciones auditivas, en neonatos con emisiones otoacústicas y niños escolares con tamizados auditivos;
La detección precoz de sorderas inducidas por ruido con la elaboración y ejecución de programas de prevención de la sordera;
La rehabilitación auditiva con audífonos o implantes cocleares;
El tratamiento de los pacientes con vértigo mediante la rehabilitación vestibular y las maniobras de reposición de partículas:
Realización de exámenes ORL en evaluaciones médico legales.
Otros servicios destinados a la docencia, investigación y extensión en temas afines a ORL.

Algunos de los últimos avances tecnológicos de la medicina aún en nuestros días continúan en una etapa de prueba. En el campo de la medicina, los profesionales realizan intensos experimentos y pruebas con toda clase de nuevos y modernos instrumentos, utilizan diversos y sofisticados procedimientos y lo último en tecnología, así se dan la mano distintas ramas de las ciencias con el mismo fin: salvar vidas y mejorar la salud de la humanidad.


Tal como ocurre en el caso de los medicamentos, es necesario tener la certeza de que no hay riesgo alguno para el paciente. Y este proceso, a veces puede llegar a tardar unos cuantos años para que  se pueda aprobar o no su uso en la medicina.


Para conocer un poco más sobre estos, veamos hoy algunos de los avances de la medicina desarrollados en los últimos tiempos...


Cirugía a distancia

ISTOCKPHOTO
Esta novedosa forma de practicar la medicina permite a los doctores realizar cirugías en el lugar donde se encuentre el paciente, mientras que ellos están al mismo tiempo en un lugar diferente. Los investigadores están desarrollando una nueva forma de robots: los nanorobots, que son capaces de ser insertados; por ejemplo, en el abdomen de un paciente para ser controlados por cirujanos a cientos de kilómetros de distancia. ¿Imaginas? Mientras uno se encuentra en la sala de cirugía, su médico puede estar en otro país, operando desde su hogar.


Estos sistemas están ideados para trabajar en zonas de desastre, campos de batalla o cualquier circunstancia en la que el paciente o el profesional no pueden trasladarse a un hospital. Este micro robot es entre otras cosas, capaz de frenar hemorragias internas: la principal causa de muerte en situaciones traumáticas.


Sensores implantables


Mediante el implante de diminutos sensores dentro del cuerpo humano, con esta invención sería posible monitorear diversas variables; desde la presión sanguínea hasta la presencia de sustancias tóxicas, la temperatura, presión arterial, el flujo de la sangre, etc. Prácticamente, se pueden usar para conocer cualquier parámetro dentro del cuerpo humano y a tiempo real.

© GETTY IMAGES
Cirugía con láser


Esta nueva técnica quirúrgica mejoró notablemente los resultados de las cirugías, además de ahorrar millones de dólares en gastos médicos. La tecnología de la cirugía láser no invasiva permite al cirujano practicar una cirugía en su propio consultorio, sin anestesia, y al finalizar el paciente puede irse a su casa. Por supuesto que esto es aplicable a cirugías simples, pero que antes requerían una visita al quirófano, anestesia y muchas veces significaba pasar una o dos noches en el hospital.


Muy interesante, ¿no es así? ¿Qué nuevos avances supones que podrán existir en el ámbito de la medicina de aquí a los próximos 30 años?


¿Cómo va a ser el mundo de la industria de la salud en el futuro? En este video podrán ver cómo la tecnología acompañará a la industria. Los avances que permitirán mejorar la calidad de vida y practicar una medicina proactiva y no reactiva.En este video es interesante ya que interfiere como la tecnologia interviene en la mejora de la salud y ayuda a ver los riesgos de algunas enfermedades yherramientas para mejorar la calidad de vidaEsta técnica se ha ido popularizando y es también conocida como Diagnóstico por Ultrasonidos. Los ultrasonidos son vibraciones acústicas emitidas por un cristal piezoeléctrico que es capaz de transformar vibraciones en impulsos eléctricos y viceversa. Así, al estimularse eléctricamente al sensor, éste emite vibraciones que viajan hasta el órgano bajo estudio y rebotan del cuerpo hacia el sensor. Una computadora colecta estos ecos transformándolos en imágenes. Se utiliza un gel especial para asegurar un mejor contacto con la piel del paciente y así obtener imágenes más nítidas.

La econografía permite apreciar diferencias en la densidad de un órgano, a diferencia de los rayos X que sólo aportan datos sobre el contorno y forma del mismo. Una de las limitaciones de éste tipo de diagnóstico es que no puede ser utilizada en el diagnóstico pulmonar.